|
@@ -0,0 +1,111 @@
|
|
|
|
+import cv2
|
|
|
|
+import numpy as np
|
|
|
|
+import zmq
|
|
|
|
+from skimage.measure import label
|
|
|
|
+import math
|
|
|
|
+
|
|
|
|
+def euclidian(x1, y1, x2, y2):
|
|
|
|
+ return ((x1 - x2)**2 + (y1 - y2)**2)**0.5
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+cv2.namedWindow("Image", cv2.WINDOW_GUI_NORMAL)
|
|
|
|
+cv2.namedWindow("Image2", cv2.WINDOW_GUI_NORMAL)
|
|
|
|
+
|
|
|
|
+context = zmq.Context()
|
|
|
|
+socket = context.socket(zmq.SUB)
|
|
|
|
+socket.setsockopt(zmq.SUBSCRIBE, b"")
|
|
|
|
+port = 5055
|
|
|
|
+socket.connect(f"tcp://192.168.0.113:{port}")
|
|
|
|
+n = 0
|
|
|
|
+
|
|
|
|
+while True:
|
|
|
|
+ bts = socket.recv()
|
|
|
|
+ n += 1
|
|
|
|
+ arr = np.frombuffer(bts, np.uint8)
|
|
|
|
+ imagege = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
|
|
|
+ key = cv2.waitKey(10)
|
|
|
|
+
|
|
|
|
+ if key == ord("q"):
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ image = cv2.cvtColor(imagege.copy(), cv2.COLOR_BGR2HSV)
|
|
|
|
+ image = image[:,:,1]
|
|
|
|
+
|
|
|
|
+ img = image.copy()
|
|
|
|
+ _, thras = cv2.threshold(img, 70, 255, cv2.THRESH_BINARY)
|
|
|
|
+ image = cv2.threshold(image, 70, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
+ image = cv2.dilate(image, None, iterations=3)
|
|
|
|
+
|
|
|
|
+ # sssssss
|
|
|
|
+
|
|
|
|
+ # ssssssss
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ labeled = label(image)
|
|
|
|
+
|
|
|
|
+ cntrs = list(cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0])
|
|
|
|
+
|
|
|
|
+ circles = 0
|
|
|
|
+ cubicCount = 0
|
|
|
|
+
|
|
|
|
+ for c in cntrs:
|
|
|
|
+ (curr_x, curr_y), r = cv2.minEnclosingCircle(c)
|
|
|
|
+ area = cv2.contourArea(c)
|
|
|
|
+ circleArea = math.pi * r ** 2
|
|
|
|
+
|
|
|
|
+ if area <= 2000:
|
|
|
|
+ continue
|
|
|
|
+
|
|
|
|
+ if area / circleArea >= 0.9:
|
|
|
|
+ circles += 1
|
|
|
|
+ else:
|
|
|
|
+ cubicCount += 1
|
|
|
|
+
|
|
|
|
+ distance_map = cv2.distanceTransform(thras, cv2.DIST_L2, 5)
|
|
|
|
+ ret ,dist_thres= cv2.threshold(distance_map, 0.6 * np.max(distance_map), 255, cv2.THRESH_BINARY)
|
|
|
|
+ # ret, dist_thres = cv2.threshold(distance_map, 0.5, 25, cv2.THRESH_BINARY)
|
|
|
|
+ # ret, markers = cv2.connectedComponents(dist_thres.astype('uint8'))
|
|
|
|
+ # segments = cv2.wetershed(image, markers + 1)
|
|
|
|
+ confuse = cv2.subtract(thras, dist_thres.astype('uint8'))
|
|
|
|
+ ret, markers = cv2.connectedComponents(dist_thres.astype('uint8'))
|
|
|
|
+ markers += 1
|
|
|
|
+ markers[confuse == 255] = 0
|
|
|
|
+ segments = cv2.watershed(imagege, markers)
|
|
|
|
+ cnts, hierrache = cv2.findContours(segments, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
+
|
|
|
|
+ circlesA = 0
|
|
|
|
+ cubicCountA = 0
|
|
|
|
+
|
|
|
|
+ for i in range(len(cnts)):
|
|
|
|
+ if hierrache[0][i][3] != -1: continue
|
|
|
|
+ c = cnts[i]
|
|
|
|
+ (curr_x, curr_y), r = cv2.minEnclosingCircle(c)
|
|
|
|
+ area = cv2.contourArea(c)
|
|
|
|
+ circleArea = math.pi * r ** 2
|
|
|
|
+
|
|
|
|
+ if area <= 2000:
|
|
|
|
+ continue
|
|
|
|
+
|
|
|
|
+ if area / circleArea >= 0.9:
|
|
|
|
+ circlesA += 1
|
|
|
|
+ else:
|
|
|
|
+ cubicCountA += 1
|
|
|
|
+
|
|
|
|
+ for i in range(len(cnts)):
|
|
|
|
+ if hierrache[0][i][3] == -1:
|
|
|
|
+ cv2.drawContours(imagege, cnts, i, (0, 255, 0), 10)
|
|
|
|
+
|
|
|
|
+ cv2.putText(image, f"Circles count = {circles}, quadro count = {cubicCount}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
+ 0.7, (127, 255, 255))
|
|
|
|
+
|
|
|
|
+ cv2.putText(image, f"Image = {n}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
+ 0.7, (127, 255, 255))
|
|
|
|
+
|
|
|
|
+ cv2.imshow("Image", image)
|
|
|
|
+
|
|
|
|
+ cv2.putText(imagege, f"Circles count = {circlesA}, quadro count = {cubicCountA}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
+ 0.7, (127, 255, 255))
|
|
|
|
+
|
|
|
|
+ cv2.imshow("Image2", imagege)
|
|
|
|
+
|
|
|
|
+cv2.destroyAllWindows()
|