123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import cv2
- import numpy as np
- import zmq
- from skimage.measure import label
- import math
- def euclidian(x1, y1, x2, y2):
- return ((x1 - x2)**2 + (y1 - y2)**2)**0.5
- cv2.namedWindow("Image", cv2.WINDOW_GUI_NORMAL)
- cv2.namedWindow("Image2", cv2.WINDOW_GUI_NORMAL)
- context = zmq.Context()
- socket = context.socket(zmq.SUB)
- socket.setsockopt(zmq.SUBSCRIBE, b"")
- port = 5055
- socket.connect(f"tcp://192.168.0.113:{port}")
- n = 0
- while True:
- bts = socket.recv()
- n += 1
- arr = np.frombuffer(bts, np.uint8)
- imagege = cv2.imdecode(arr, cv2.IMREAD_COLOR)
- key = cv2.waitKey(10)
- if key == ord("q"):
- break
- image = cv2.cvtColor(imagege.copy(), cv2.COLOR_BGR2HSV)
- image = image[:,:,1]
- img = image.copy()
- _, thras = cv2.threshold(img, 70, 255, cv2.THRESH_BINARY)
- image = cv2.threshold(image, 70, 255, cv2.THRESH_BINARY)[1]
- image = cv2.dilate(image, None, iterations=3)
- # sssssss
- # ssssssss
- labeled = label(image)
- cntrs = list(cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0])
- circles = 0
- cubicCount = 0
- for c in cntrs:
- (curr_x, curr_y), r = cv2.minEnclosingCircle(c)
- area = cv2.contourArea(c)
- circleArea = math.pi * r ** 2
-
- if area <= 2000:
- continue
- if area / circleArea >= 0.9:
- circles += 1
- else:
- cubicCount += 1
- distance_map = cv2.distanceTransform(thras, cv2.DIST_L2, 5)
- ret ,dist_thres= cv2.threshold(distance_map, 0.6 * np.max(distance_map), 255, cv2.THRESH_BINARY)
- # ret, dist_thres = cv2.threshold(distance_map, 0.5, 25, cv2.THRESH_BINARY)
- # ret, markers = cv2.connectedComponents(dist_thres.astype('uint8'))
- # segments = cv2.wetershed(image, markers + 1)
- confuse = cv2.subtract(thras, dist_thres.astype('uint8'))
- ret, markers = cv2.connectedComponents(dist_thres.astype('uint8'))
- markers += 1
- markers[confuse == 255] = 0
- segments = cv2.watershed(imagege, markers)
- cnts, hierrache = cv2.findContours(segments, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
- circlesA = 0
- cubicCountA = 0
- for i in range(len(cnts)):
- if hierrache[0][i][3] != -1: continue
- c = cnts[i]
- (curr_x, curr_y), r = cv2.minEnclosingCircle(c)
- area = cv2.contourArea(c)
- circleArea = math.pi * r ** 2
-
- if area <= 2000:
- continue
- if area / circleArea >= 0.9:
- circlesA += 1
- else:
- cubicCountA += 1
- for i in range(len(cnts)):
- if hierrache[0][i][3] == -1:
- cv2.drawContours(imagege, cnts, i, (0, 255, 0), 10)
- cv2.putText(image, f"Circles count = {circles}, quadro count = {cubicCount}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX,
- 0.7, (127, 255, 255))
-
- cv2.putText(image, f"Image = {n}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX,
- 0.7, (127, 255, 255))
-
- cv2.imshow("Image", image)
- cv2.putText(imagege, f"Circles count = {circlesA}, quadro count = {cubicCountA}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX,
- 0.7, (127, 255, 255))
- cv2.imshow("Image2", imagege)
- cv2.destroyAllWindows()
|