1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- import cv2
- import numpy as np
- import matplotlib.pyplot as plt
- # cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
- def chose(contour):
- sm = cv2.arcLength(contour, True)
- approx = cv2.approxPolyDP(contour, sm*0.025, True)
- if (len(approx) == 7 or len(approx) == 8) and sm > 60:
- return 'circle'
- def recognize(image, shape):
- # =============== Находим большие синие круглишки =================
- hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
- binary = np.zeros(hsv.shape[:-1])
- binary[np.any(hsv > 190, axis=2)] = 1
- contours = cv2.findContours(binary.astype('uint8'), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
- corner_left_up, corner_right_down = None, None
- for i,contour in enumerate(contours):
- if chose(contour) == 'circle':
- x = contour[:, 0, 0]
- y = contour[:, 0, 1]
- x_max, x_min, y_max, y_min = x.max(), x.min(), y.max(), y.min()
- if not corner_left_up or corner_left_up[0] < x_min or corner_left_up[1] < y_min:
- corner_left_up = (x_max, y_max)
- elif not corner_right_down or corner_right_down[0] > x_min or corner_right_down[1] > y_min:
- corner_right_down = (x_min, y_min)
- cv2.drawContours(image, contours, i, (0, 255, 0), 2)
- # ================= Бинаризируем полученное поле ===================
-
- image = image[corner_right_down[1]:corner_left_up[1],corner_right_down[0]:corner_left_up[0]]
- image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- thresh = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,3,2)
- binary = np.zeros(image.shape)
- binary[image < thresh] = 1
- binary = cv2.dilate(binary, None, iterations=2)
- contours = cv2.findContours(binary.astype('uint8'), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
- newbinary = np.zeros(binary.shape)
- for contour in contours:
- cv2.drawContours(newbinary, [contour], -1, 1, -1)
- binary = cv2.erode(newbinary, None, iterations=5)
- binary = cv2.dilate(binary, None, iterations=2)
- # ================= Трансформируем доску в экран ===================
- desk_contour = np.float32([[0, binary.shape[0]], [0,0],
- [binary.shape[1], 0], [binary.shape[1], binary.shape[0]]])
- game_contour = np.float32([[0, shape[1]], [0, 0], [shape[0], 0], [shape[0], shape[1]]])
- mask = cv2.getPerspectiveTransform(desk_contour, game_contour)
- binary = cv2.warpPerspective(binary, mask, shape)
- # =================== Находим объекты ===================
- contours = cv2.findContours(binary.astype('uint8'), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
- polys = []
- for contour in contours:
- eps = 0.044 * cv2.arcLength(contour, True)
- rect = cv2.minAreaRect(contour)
- box = cv2.boxPoints(rect)
- box = np.intp(box)
- approx = cv2.approxPolyDP(box, eps, True)
- approx = approx[:, 0, :].tolist()
- polys.append(approx)
- return polys
- if __name__ == "__main__":
- image = cv2.imread('falling_ball/image.png')
- print(recognize(image, (1200, 800)))
|