|
@@ -1,15 +1,33 @@
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
|
|
|
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
|
|
|
|
|
|
def chose(contour):
|
|
|
sm = cv2.arcLength(contour, True)
|
|
|
approx = cv2.approxPolyDP(contour, sm*0.025, True)
|
|
|
- print(approx)
|
|
|
if len(approx) == 7 or len(approx) == 8: return 'circle'
|
|
|
|
|
|
|
|
|
+lower = 100
|
|
|
+upper = 200
|
|
|
+
|
|
|
+
|
|
|
+def lower_update(value):
|
|
|
+ global lower
|
|
|
+ lower = value
|
|
|
+
|
|
|
+
|
|
|
+def upper_update(value):
|
|
|
+ global upper
|
|
|
+ upper = value
|
|
|
+
|
|
|
+
|
|
|
+cv2.createTrackbar("Lower", "Image", lower, 255, lower_update)
|
|
|
+cv2.createTrackbar("Upper", "Image", upper, 255, upper_update)
|
|
|
+
|
|
|
+
|
|
|
def recognize(image):
|
|
|
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
|
|
binary = np.zeros(hsv.shape[:-1])
|
|
@@ -17,21 +35,33 @@ def recognize(image):
|
|
|
binary[np.any(hsv > 190, axis=2)] = 1
|
|
|
|
|
|
contours = cv2.findContours(binary.astype('uint8'), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
|
|
|
+ corner_left_up, corner_right_down = None, None
|
|
|
for i,contour in enumerate(contours):
|
|
|
- # print(contour)
|
|
|
- # print(chose(contour))
|
|
|
if chose(contour) == 'circle':
|
|
|
- cv2.drawContours(image, contours, i, (0, 255, 0), 10)
|
|
|
+ x = contour[:, 0, 0]
|
|
|
+ y = contour[:, 0, 1]
|
|
|
+ x_max, x_min, y_max, y_min = x.max(), x.min(), y.max(), y.min()
|
|
|
+ if not corner_left_up or corner_left_up[0] < x_min or corner_left_up[1] < y_min:
|
|
|
+ corner_left_up = (x_max, y_max)
|
|
|
+ elif not corner_right_down or corner_right_down[0] < x_min or corner_right_down[1] < y_min:
|
|
|
+ corner_right_down = (x_min, y_min)
|
|
|
|
|
|
- cv2.imshow('Image', image)
|
|
|
- while cv2.waitKey(1) != ord('q'): continue
|
|
|
+ shape = (corner_left_up[0]-corner_right_down[0], corner_left_up[1]-corner_right_down[1])
|
|
|
|
|
|
- # image = image[t_min_loc1[1] + 20:t_min_loc2[1], t_min_loc1[0] + 20:t_min_loc2[0]]
|
|
|
+ image = image[corner_right_down[1]:corner_left_up[1],corner_right_down[0]:corner_left_up[0]]
|
|
|
|
|
|
- # hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
|
|
- # hsv = cv2.GaussianBlur(hsv, (9, 9), 0)
|
|
|
- # _, thresh = cv2.threshold(hsv[:, :, 1], 27, 255, cv2.THRESH_BINARY)
|
|
|
+ # hsv = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2HSV)
|
|
|
+ # hsv = cv2.GaussianBlur(hsv, (1, 1), 0)
|
|
|
+ # _, thresh = cv2.threshold(hsv[:, :, 1], lower, upper, cv2.THRESH_BINARY)
|
|
|
# cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
+ # cv2.drawContours(image, cnts, -1, (0, 255, 0), 2)
|
|
|
+
|
|
|
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
+
|
|
|
+ thresh = cv2.threshold(image, lower, upper, cv2.THRESH_BINARY)[0]
|
|
|
+ # thresh = cv2.adaptiveThreshold(image,upper,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,3,2)
|
|
|
+ binary = np.zeros(image.shape)
|
|
|
+ binary[image < thresh] = 1
|
|
|
|
|
|
# polys = []
|
|
|
# for cont in cnts:
|
|
@@ -43,8 +73,13 @@ def recognize(image):
|
|
|
# approx = approx[:, 0, :].tolist()
|
|
|
# polys.append(approx)
|
|
|
|
|
|
- # return polys, (t_min_loc2[0] + 20, t_min_loc2[1] + 20)
|
|
|
+ cv2.imshow('Image', binary)
|
|
|
+
|
|
|
+ cv2.waitKey(1)
|
|
|
+
|
|
|
+ # return polys, shape
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
- image = cv2.imread('falling_ball/image.png')
|
|
|
- print(recognize(image))
|
|
|
+ while True:
|
|
|
+ image = cv2.imread('falling_ball/image.png')
|
|
|
+ print(recognize(image))
|