jezv hai 11 meses
pai
achega
89d9382e98
Modificáronse 1 ficheiros con 2 adicións e 9 borrados
  1. 2 9
      falling_ball/cv.py

+ 2 - 9
falling_ball/cv.py

@@ -50,16 +50,9 @@ def recognize(image):
 
     image = image[corner_right_down[1]:corner_left_up[1],corner_right_down[0]:corner_left_up[0]]
 
-    # hsv = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2HSV)
-    # hsv = cv2.GaussianBlur(hsv, (1, 1), 0)
-    # _, thresh = cv2.threshold(hsv[:, :, 1], lower, upper, cv2.THRESH_BINARY)
-    # cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
-    # cv2.drawContours(image, cnts, -1, (0, 255, 0), 2)
-
     image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 
-    thresh = cv2.threshold(image, lower, upper, cv2.THRESH_BINARY)[0]
-    # thresh = cv2.adaptiveThreshold(image,upper,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,3,2)
+    thresh = cv2.adaptiveThreshold(image,upper,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,3,2)
     binary = np.zeros(image.shape)
     binary[image < thresh] = 1
 
@@ -81,5 +74,5 @@ def recognize(image):
 
 if  __name__ == "__main__":
     while True:
-        image = cv2.imread('falling_ball/image.png')
+        image = cv2.imread('falling_ball/image3.png')
         print(recognize(image))