| 
					
				 | 
			
			
				@@ -1,8 +1,7 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import cv2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import numpy as np 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import zmq 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-from skimage.measure import label 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import math 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from recognizer import recognize 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 def euclidian(x1, y1, x2, y2): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     return ((x1 - x2)**2 + (y1 - y2)**2)**0.5 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -23,89 +22,7 @@ while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     n += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     arr = np.frombuffer(bts, np.uint8) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     imagege = cv2.imdecode(arr, cv2.IMREAD_COLOR) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    key = cv2.waitKey(10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    if key == ord("q"): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    image = cv2.cvtColor(imagege.copy(), cv2.COLOR_BGR2HSV) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    image = image[:,:,1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    img = image.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    _, thras = cv2.threshold(img, 70, 255, cv2.THRESH_BINARY) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    image = cv2.threshold(image, 70, 255, cv2.THRESH_BINARY)[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    image = cv2.dilate(image, None, iterations=3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    # sssssss 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    # ssssssss 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    labeled = label(image) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cntrs = list(cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    circles = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cubicCount = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    for c in cntrs: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        (curr_x, curr_y), r = cv2.minEnclosingCircle(c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        area = cv2.contourArea(c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        circleArea = math.pi * r ** 2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if area <= 2000: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if area / circleArea  >= 0.9: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            circles += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            cubicCount += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    distance_map = cv2.distanceTransform(thras, cv2.DIST_L2, 5) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    ret ,dist_thres= cv2.threshold(distance_map, 0.6 * np.max(distance_map), 255, cv2.THRESH_BINARY) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    # ret, dist_thres = cv2.threshold(distance_map, 0.5, 25, cv2.THRESH_BINARY) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    # ret, markers = cv2.connectedComponents(dist_thres.astype('uint8')) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    # segments = cv2.wetershed(image, markers + 1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    confuse = cv2.subtract(thras, dist_thres.astype('uint8')) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    ret, markers = cv2.connectedComponents(dist_thres.astype('uint8')) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    markers += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    markers[confuse == 255] = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    segments = cv2.watershed(imagege, markers) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cnts, hierrache = cv2.findContours(segments, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    circlesA = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cubicCountA = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    for i in range(len(cnts)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if hierrache[0][i][3] != -1: continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        c = cnts[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        (curr_x, curr_y), r = cv2.minEnclosingCircle(c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        area = cv2.contourArea(c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        circleArea = math.pi * r ** 2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if area <= 2000: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if area / circleArea  >= 0.9: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            circlesA += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            cubicCountA += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    for i in range(len(cnts)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if hierrache[0][i][3] == -1: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            cv2.drawContours(imagege, cnts, i, (0, 255, 0), 10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cv2.putText(image, f"Circles count = {circles}, quadro count = {cubicCount}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                0.7, (127, 255, 255)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-     
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cv2.putText(image, f"Image = {n}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                0.7, (127, 255, 255)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				      
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cv2.imshow("Image", image) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cv2.putText(imagege, f"Circles count = {circlesA}, quadro count = {cubicCountA}", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                0.7, (127, 255, 255)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    cv2.imshow("Image2", imagege) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    recognize(imagege, n, True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 cv2.destroyAllWindows() 
			 |