123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- from sympy import *
- from itertools import product, combinations
- import plotly.graph_objects as go
- import numpy as np
- import math
- class solver:
- corners = (-100, 100)
- data: list[str]
- equalations: list[Equality]
- sequance = None
- solutions: list
- points: list
- ndims: int
- __X = [*symbols('x1 x2 x3')]
- @staticmethod
- def toEq(data):
- data = data[:]
- for i,linEx in enumerate(data):
- data[i] = Eq(*[simplify(side) for side in linEx.split('=')])
- return data
- def solve(self):
- result = []
- for Eq in self.equalations:
- lin = []
- for prod in product([-100, 100], repeat=self.ndims-1):
- subEq = Eq.copy()
- X = self.__X[:]
- high_sym = sorted(list(subEq.free_symbols), key=lambda x: x.name)[0]
- X.remove(high_sym)
- values = [(sym,corner) for sym, corner in zip(X, prod)]
- subEq = subEq.subs(values)
- solution = int(solve(subEq, high_sym)[0])
- values.append((high_sym, solution))
- lin.append(sorted(values, key=lambda x: x[0].name))
- result.append([[dot[dim][1] for dot in lin] for dim in range(self.ndims)])
- return result
- def right_dote(self, dote):
- flag = True
- for line in self.data:
- for sym, val in zip(self.__X, dote): line = line.replace(sym.name, str(val))
- flag *= eval(line)
- return flag
- def get_dots(self):
- result = []
- for Eqs in combinations(self.equalations, r=2):
- if Eqs[0] == Eqs[1]: continue
- solution = list(solve(Eqs, Eqs[0].free_symbols | Eqs[1].free_symbols, set=True))[1]
- if len(solution) == 0: continue
- dot = list(solve(Eqs, Eqs[0].free_symbols | Eqs[1].free_symbols, set=True)[1])[0]
- if self.right_dote(dot): result.append(dot)
- reference_point = result[0]
- sorted_coordinates = sorted(result, key=lambda point: math.atan2(point[1] - reference_point[1], point[0] - reference_point[0]))
- return [[float(val[dim]) for val in sorted_coordinates] for dim in range(self.ndims)]
- def show(self):
- fig = go.Figure()
- for line, names in zip(self.solutions, self.data):
- fig.add_trace(go.Scatter({dim:val for val, dim in zip(line, ('x','y','z'))}, name=str(names)))
- fig.add_trace(go.Scatter({dim:val for val, dim in zip(self.get_dots(), ('x','y','z'))}, mode='markers', fill='toself', fillpattern=dict(fillmode='replace', shape='x')))
- fig.add_trace(go.Scatter(x=[0, self.gradient[0]], y=[0, self.gradient[1]],
- marker=dict(color='black', symbol='arrow', size=16, angleref="previous"),
- line = dict(width=4, dash='dot', color='black')))
- touch = len(fig.data)
- for step in np.arange(0, self.count, self.step):
- k = ((self.gradient[1]-0) * (step-0) - (self.gradient[1]-0) * (0-0)) / ((self.gradient[1]-0)**2 + (self.gradient[0]-0)**2)
- x4 = step - k * (self.gradient[1]-0)
- y4 = 0 + k * (self.gradient[0]-0)
- y5 = y4+y4
- x5 = x4+(x4-step)
- fig.add_trace(
- go.Scatter(visible=False, line=dict(color='black', width=2),
- x=[step, x4, x5], y=[0, y4, y5])
- )
- fig.data[touch].visible = True
- steps = []
- for i in range(len(fig.data[touch:])):
- step = dict(
- method="update",
- args=[{"visible": [True]*touch + [False] * (len(fig.data)-touch)},
- {"title": "Slider switched to step: " + str(i)}], # layout attribute
- )
- step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible"
- steps.append(step)
- sliders = [dict(
- active=10,
- currentvalue={"prefix": "Frequency: "},
- pad={"t": 50},
- steps=steps
- )]
- fig.update_layout(
- sliders=sliders
- )
- fig.update_xaxes(title_text='x1', gridwidth=1)
- fig.update_yaxes(title_text='x2', gridwidth=1)
- fig.show()
- def __init__(self, seq: str, data: list[str], ndims=2, step=0.01, count=10):
- self.data = data
- self.gradient = list(map(int,Poly(simplify(seq)).coeffs()))
- self.equalations = solver.toEq([lin.replace('>','').replace('<', '') for lin in data])
- self.ndims = ndims
- self.__X = self.__X[:ndims]
- self.solutions = self.solve()
- self.count = count
- self.step = step
- if __name__ == '__main__':
- # solver( seq='3*x1 + 4*x2',
- # data=['4*x1 + x2 <= 8',
- # 'x1 >= 0',
- # 'x1 - x2 >= -3',
- # 'x2 >= 0'], ndims=2).show()
- # solver( seq='3*x1 + 2*x2',
- # data=['2*x1 + 3*x2 <= 6',
- # 'x1 <= 2', 'x1 >= 0',
- # '2*x1 - x2 >= 0',
- # 'x2 >= 0', 'x2 <= 1'], ndims=2).show()
- # solver( seq='x1 + 3*x2',
- # data=['2*x1 + 3*x2 <= 24',
- # 'x1 >= 0',
- # 'x1 - x2 <= 7',
- # 'x2 >= 0', 'x2 <= 6'], ndims=2, step=0.1, count=25).show()
- # solver( seq='x1 - 1.1*x2 + 7.4',
- # data=['x1 >= 0',
- # 'x2 >= 0',
- # 'x1 + x2 <= 10',
- # '10 - x1 >= 0', '10 - x2 >= 0'], ndims=2, step=0.1, count=15).show()
-
- pass
|